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INFORMATIVE QUANTILE FUNCTIONS AND

IDENTIFICATION OF PROBABILITY DISTRIBUTION TYPES

by Emanuel Parzen

Department of Statistics
Texas A&M University

Abstract

A problem of great importance to statistical data

analysts is quick identification of possible probability

distributions for observed data, and classification of tail

behavior of probability distributions. This paper discusses

the informative quantile function IQ(u) - {Q(u) - Q(0.5)) z

2{Q(0.75) - Q(0.25)}, and its use to identify probability models

for observed data and its use to provide concepts of

representative distributions which illustrate the different

types of shapes and tail behavior that real distributions can

have. This paper also discusses estimators of tail exponents;

they can be used to identify outlying data values, and more

centrally to identify possible distributions to fit to data.
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0. Prologue: keys, two-keys, and statistical signals

This paper introduces the informative quantile function;

its definition is probability based, its properties can be

studied both mathematically and empirically, and it provides

unified definitions and practical estimators of the tail types

of probability distributions that can fit an observed batch of

data. Illustrative tables of tail values of informative

quantile functions of familiar distributions are given; they

provide new types of keys (and two-keys) for exploratory

data analysis of a (random) sample (of a random variable).

A key for exploratory data analysis is defined to be a

method of data detection by which researchers can familiarize

ourselves "with the data, get a rough idea of potential

problems, and look for both obvious and subtle clues about

the process that generated the data and the process that

processed the data before we got to see it" [Welsch commenting

on Parzen (1979)]. When a key is based on concepts of

probability theory (and thus ultimately also provides methods

of data inference and confirmatory data anlaysis), we call it

a two-key.

Keys which are also two-keys provide statistical signals.

one important role of numerical statistical signals is to be

appended to statistical graphics to help guide the Viewer's

attention to the graphical statistical signals (significant

features of the graphs). In support of the proposition that the
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best keys are two-keys, we conclude with a statement by

W. E. Deming entitled "Statistical Work and Computers." (We

do not know where it was published, and believe it to have been

written in the early 1970's).

The feature that distinguishes the statistician
from other professions is his use of the theory of
probability. The statistician requires knowledge
of statistical theory. To fulfill his duties in
professional practice, he must distinguish between
knowledge and wisdom. He is a scientist, but also
an artist. He requires wisdom to make a good choice
of problem and a choice of statistical procedure
that will be valid and feasible under the
circumstances.

The computer can be the statistician's servant,
though many people are content if it is the other
way around. Many firms today have magnificent
information systems, but too often these systems
fail to present information as wisdom. The
statistician, in his aim to find causes of variation
in product (synonymous with poor quality and high
costs), may use data from an information system,
but he adapts the system to calculate statistical
signals. It is more important to have a system to
improve performance than to have a system that
merely tells us where we are now. The statistician
transforms information into a living force for the
advancement of knowledge and for improvement of
quality and output, industrial and agricultural.
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1. Quantile and sample guantile functions

Various aspects of the probability distribution of a

random variable X are described by its:

distribution function F(x) = Pr[X<x], --<x<c ;

probability density f(x) = F'(x), -0<x<0 ;

quantile function Q(u) = F-l(u), O<u<l ;

quantile density function q(u) = Q'(u), O<u<l ;

density-quantile function fQ(u) = fF-(u)) = {q(u)}-l

O<u<l

score function J(u) - -(fQ)'(u) , O<u<l

Let X1, X2 ....,Xn be a data set. The keys we propose, to

gain insight into the processes generating the data, become two-

keys when we assume that the data batch is a random sample of a

random variable X. The sample distribution function F(x) and

sample quantile function Q(u) are defined in terms of the order

statistics Xln .< X2n < - <_Xnn of the sample:

F (x)u' X x<n ' n- X(j+l)n

Q (u) X <
jn' n -n

, ,,...,
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In practice we prefer to use a sample quantile function Q(u)

which is piecewise linear between the values

Q(-r) - Xjn , J,...,n.

For graphical data analysis, we transform Q(u) to a

normalized version IQ(u), called the sample informative

quantile function. The value of IQ(u), as u tends to 0 and 1,

provide diagnostic measures of the type of probability

distribution. An important classification of "type" is in

terms of tail exponents.
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2. Tail Exponents Classification of Probability Laws

From extreme value theory, statisticians have long realized

that it is useful to classify distributions according to their

tail behavior (behavior of F(x) as x tends to + 0). It is usual

to distinguish three main types of distributions, called (1)

limited, (2) exponential, and (3) algebraic. This classification

can also be expressed in terms of the density quantile function

fQ(u); we call the types short, medium, and long tail.

A reasonable assumption about the distributions that occur

in practice is that their density-quantile functions are

regularly varying in the sense that there exist tail exponents

a0 and a, such that, as u-0,

fQ(u) - u Lo(u) , fQ(l-u) = u Ll(u)

where Lj(u) for j=O,l is a slowly varying function.

A function L(u), O<u<l is usually defined to be slowly

varying as u-O if, for every y in O<y.l, L(yu)/L(u) - 1 or

log L(yu) - log L(u) - 0 For estimation of tail exponents

we will require further that, as u-O,

f {log L(yu) - log L(u)} dy 0

which we call integrally slowly varying. An example of a slowly

varying function is L(u) - {log ul}8; this is proved in section 9.

ti--- .-
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Classification of tail behavior of probability laws

A probability law has a left tail type and a r'ght tail

type depending on the value of aO and a,. If a is the tail

exponent, we define:

L < 0 super short tail

0 < a < 1 short tail

a = 1 medium tail

a > 1 long tail

Medium tailed distributions are further classified by the value

of J* lim J(u):

J*0 medium long tail

= 1 , 0 < J* < medium-medium tail

a J* = o medium-short tail

One immediate insight into the meaning of tail behavior is

provided by the hazard function

h(x) = f(x) {l-F(x)}

with hazard quantile function hQ(u) = fQ(u) " 1-u. The convergence

behavior of h(x) as xP. is the same as that of hQ(u) as u-Pl.

From the definitions one sees that h* - lim h(x) satisfies
Xp*j
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h* = (increasing hazard rate) Short or medium-short
tail

O<h*<co (constant hazard rate) Medium-medium tail

h* = 0 (decreasing hazard rate) Long or medium-long
tail
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3. Unitized and Informative Quantile Functions

If one can define "universal" location and scale

parameters, denoted Ul and ol respectively, then one can define

a normalization of the quantile function which depends only

on its shape (and is independent of location and scale) by

Q(u) -

Ql (u) = Q 1

We propose

UI = Q(0.5), CI = Q'(0.5) = q(0.5)

We call Ql(u) the unitized quantile function.

One can distinguish three kinds of estimators of parameters

[such as V, and a1]: fully non-parametric [denoted Pi and

a11, fully parametric [denoted i and li], and functional

[estimators l and ;1 which are the parameters of smoothed

quantile functions Q(u) obtained by smoothing the raw or fully

non-parametric estimator Q(u)]. The shape of Q(u) must be

inferred before one can efficiently estimate V and a using fully

parametric (or robust parametric) estimators.

A fully non-parametric estimator of Q(0.5) is Q(0.5). A

fully non-parametric estimator of q(0.5) is more difficult to

define. We therefore consider quick and dirty approximators of

q(0.5) of the form
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= Q(0.5 + p) --Q(o.5 - p)
p 2p

where OSp<O.5. We usually take p 0.25; then we approximate

q(0.5) by

00.25 - 2{Q(0.75) - Q(0.25)1

We call

IQ(u) . (u) - 90.5)[q~u =2{Q(0.75) - Q(0.25)}

the informative quantile function.

We compute IQ(u), but graphically we plot the truncated

informative quantile function

TIQ(u) - -l if IQ(u) < -1,

1 if IQ(u) > 1,

IQ(u) if IIQ(u)l ! 1.

In addition to the plot of TIQ(u), we report the values of IQ(u)

at u-0.01, 0.05, 0.10, 0.25, 0.75, 0.90, 0.95, 0.99. Truncating

the values of IQ(u) in our plot enables us to see the "middle"

of the distribution. The ends (tails) of the distributions are

described numerically by the extreme values of IQ(u).

'I _
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For convenience in seeing at a glance in a plot of IQ(u)

its behavior, especially as u tends to 0 and 1, we plot on the

same graph the IQ(u) of a uniform distribution (it is a straight

line with values -0.5 and 0.5 at u = 0 and 1 respectively).

Example: Super Short Distributions. An imporant example

of a super-short distribution (a<0) is X -cos TU where U is

uniform [0,1]. Since -cos 7u is an increasing function of u,

the quantile function of X is Q(u) = -cos nu, with quantile

density and density-quantile

q(u) = sin Tru fQ(u) ..
n s in 7ru

As u-0, fQ(u)- u-1 so O0 = -1. The distribution is symmetric,

in the sense that q(l-u) = q(u); therefore a, = -1. The

interquartile range IQR = /7 ; the informative quantile function

is IQ(u) = (-.35) cos ru. Therefore IQ(0) = -.35, IQ(l) = .35.

These values are taken as typical values of super-short

distributions.
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4. Examples of theoretical informative quantile functions

A normal distribution is defined in terms of the standard

normal density O(x) and distribution O(x),

1 2

O(x) - I exp - x , (x) f f0(y)dy;

a distribution F(x) 4s called normal when it can be represented

F(x) f(x) aX- )

with quantile function

I-

Q(u) = j +0 a (u).

The parameters V, and a, are related to j and a by UI ji and

• 01 = o/-. The unitized normal density (for which a, - 1) has

density

f 1 (x) = / - O(x V - ) = e - f x

which is Stigler's proposal for a standardized normal density

[Stigler (1982)].

An exponential distribution has density

f(x) f (X) fo(x) , x > 0
a- 0 a 0
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and quantile function

-l
Q(u) log (1-u)

Although its mean equals a, we regard a as a scale parameter

rather than a location parameter. The parameters ill, al, and

00.25 satisfy

p, - a log 2 = (.69) a; a, = 2a ; 0.25 m 2.2a

The unitized and informative exponential quantile functions are

Ql(u) - -0.5 log 2(1-u)

IQ(u) - -0.45 log 2(1-u)

The possible shapes of informative quantile functions are

best described by plots of the Weibull distribution with

parameter 0, which has standard quantile function

Q(u) - {log (l-u)-l}0

Graphs of the information quantile functions of the Weibull

distribution for 8 - .1 (.1) 2.0 are given in the appendix.
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5. Outlying data value interpretation of IQ(u)

The sample informative quantile function is defined by

IQ(u) - (Q(u) - Q(o.5)) a 2 IQR

where IQR is the sample interquartile range: IQR - Q(0.75) -

Q(0.25). The truncated sample informative quantile function

TIQ(u) is defined to be IQ(u) truncated at +1.

Hoaglin, Mosteller, and Tukey (1983, p. 39) introduce

techniques for identifying outlying (or outside) data values

as those lying outside the interval

(Q(o.25) - (1.5) IQR, Q(o.75) + (1.5) IQR)

We regard as outlying data values those lying outside the interval

(Q(0.5) - 2IQR, Q(0.5) + 2 IQR)

Outlying data values appear on the plot of TIQ(u) as values

truncated to +1. The actual values of outlying data values are

represented by the values of IQ(u) for u-0.01, 0.05, 0.10,

0.90, 0.95, 0.99. The next section discusses how these quantities

provide quick and dirty estimators of the tail type of the

distributions that can fit the sample.
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Other useful numerical diagnostics are estimators of the

IQ-mean pIQ and IQ-standard-deviation oIQ, defined by

UIQ = -- , IQ
.25 a.25

where u and a2 are the mean and variance of Q(u). The logarithm

(to the base e) of aID is denoted log SDIQ. For a normal

distribution aID - 1/27 and log SDIQ - -1 approximately. A

test that the sample has a Gaussian distribution can be based

on testing if the sample estimator of log SDIQ is significantly

different from -1.

I

.. . . . . .....IsI.. . .. [.... I .. -I: . .
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6. Tables of tail values of informative quantile functions

One use of the informative quantile function IQ(u) of a

sample is to determine quickly probability distribution that

might fit the sample. One can readily distinguish whether the

data could be fit by a normal distribution or an exponential

distribution (and thus determine the "probability of success"

if one were to apply a more formal goodness of fit test).

However no standard parametric model may fit the data, and

statistical data analysis must identify significant features

of the data "non-parametrically".

Statistical scientists are seeking to define concepts which

illustrate the different types of shapes and tail behavior that

real distributions can have. Hoaglin, Mosteller, and Tukey

(1983, p. 316) use language such as "neutral tailed (Gaussian)"

and stretch-tailed (Cauchy)". To describe the notion of tail

weight, they write that it "expresses how the extreme portion

of the distribution spreads out relative to the width of the

center." As an index of tail behavior, they introduce (p. 323)

{Q(0.9) - Q(0.1)) + (Q(0.75) - Q(0.25)) - 2{IQ(O.9) - IQ(0.1))

As indices of tail behavior, this paper proposes IQ(u)

at u - 0.01, 0.05, 0.1. 0.9, 0.95, 0.99. The true values of

these indices for various familiar distributions are given in

the tables. These indices are keys (useful for exploratory
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data analysis of what's unusual or extraordinary about a data

set) and two-keys (provide estimates of the tail exponents

and tail types of distributions that might have generated the

data).

............
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Table 6A

Tail Values of Informative Quantile Function IQ(u)

Standard Distributions

*-Approximate value of u. at which IQ(u) -1

Distribution * u .01 .05 .10 .90 .95 .99

Normal -- -.862 -.610 -.475 .475 .610 .862

Exponential .95 -.311 -.292 -.268 .732 1.048 1.780

Logistic .99 -1.046 -.670 -.500 .500 .670 1.046

Double Exp .97 -1.411 -.830 -.568 .580 .830 1.411

Cauchy .92 -7.955 -1.578 -.769 .769 1.578 7.954

Extreme Value -- -1.346 -.828 - .599 .382 .465 0.602

Log Normal .91 - .310 -.278 -.278 .895 1.438 3.178

Super Short -- - .353 -.349 -.336 .336 .349 0.353
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Table 6B

Tail Values of Informative Quantile Function IQ(u)

Weibull Q(u) - (log (1-u)-1)0

* - Approximate value of u at which IQ(u) - 1.

B * u .01 .05 .10 .90 .95 .99

.1 -1.107 -.735 -.550 .409 .505 .668

.2 -- -.921 -.655 -.506 .438 .549 .743

.3 -- -.777 -.585 -.466 .468 .595 .826

.4 -- -.662 -.525 -.430 .500 .646 .919

.5 1.0 -.571 -.473 -.396 .534 .701 1.024

.6 .98 -.498 -.427 -.366 .570 .760 1.142

.7 .97 -.437 -.387 -.338 .607 .824 1.275

.8 .96 -.388 -.351 -.312 .647 .893 1.424

.9 .95 -.346 -.320 -.295 .689 .967 1.592
1.0 .94 -.311 -.292 -.273 .732 1.048 1.780

1.1 .93 -.281 -.267 -.252 .778 1.135 1.993

1.2 .93 -.255 -.245 -.233 .827 1.229 2.232

1.3 .92 -.232 -.225 -.216 .878 1.331 2.502

1.4 .91 -.212 -.207 -.200 .931 1.440 2.806

1.5 .90 -.195 -.191 -.185 .987 1.559 3.148

1.6 .89 -.179 -.177 -.172 1.046 1.687 3.54

1.7 .89 -.165 -.163 -.159 1.107 1.825 3.969

1.8 .88 -.153 -.151 -.147 1.172 1.974 4.459
1.9 .88 -.141 -.140 -.137 1.240 2.135 5.012

2.0 .87 -.131 -.130 -.128 1.311 2.309 5.635

2.1 .87 -.121 -.121 -.119 1.386 2.497 6.338

2.2 .86 -.112 -.112 -.111 1.464 2.700 7.130

2.3 .86 -.104 -.104 -.103 1.546 2.919 8.023

2.4 .85 -.097 -.097 -.096 1.633 3.155 9.031
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Table 6C

Tail Values of Informative Quantile Function IQ(u)

Lognormal Q(u) - exp XCIl(u)

* f Approximate value of u at which IQ(u) - 1.

X * u- .01 .05 .10 .90 .95 .99

.5 .96 -.500 -.408 -.344 .653 .928 1.600

.92 -.310 -.,278 -.246 .895 1.438 3.178

1.5 .88 -.203 -.192 -.179 1.223 2.260 6.655

2 .86 -.138 -.134 -.128 1.666 3.594 14.449

2.5 .84 -.096 -.094 -.092 2.266 5.761 32.083

3 .82 -.067 -.067 -.066 3.077 9.284 72.169

3.5 .81 -.048 -.047 -.047 4.175 15.012 163.511

4 .80 -.034 -.034 -.034 5.661 24.322 371.888

4.5 .80 -.024 -.024 -.024 7.673 39.454 847.538

5 .79 -.017 -.017 -.017 10.398 64.041 --

5.5 .79 -.012 -.012 -.012 14.089 103.988

6 .79 -.009 -.009 -.009 19.087 168.886

6.5 .78 -.006 -.006 -.006 25.858 2'4.315 --

7 .78 -.004 -.004 -.004 35.029 445.586 --

7.5 .78 -.003 -.003 -.003 47.452 723.814 --

8 .78 -.002 -.002 -.002 64.280 --

6.



20

7. Example of sample informative quantile analysis

A data set extensively analyzed at Bell Telephone

Laboratories (and discussed in a recent book on graphical methods

of data analysis by Chambers, Cleveland, Kleiner, and Tukey,

(1983)) consists of Stamford Conn. Monthly Maximum Ozone levels.

Sample size n-136, sample median V, - 80, sample mean v - 89.7,

twice interquartile range a1 = 147.5, and standard deviation

o - 52.1. Rather than reporting the original data Xl ,..., Xn we

report (table 7A) the normalized values (Xj-l.1) o1 which are

used to plot IQ(u); a plot of Q(u) is given on p. 15 of Chambers

et al. Numerical statistical signals are provided by the tail

values:

u 0.05 .1 .90 .95

IQ(u) -.38 -.33 .61 .83

By consulting the table of Weibull informative quantile values,

as a first guess of a distribution to fit this data one takes

Weibull with parameter 0 - 0.8. The graph of IQ(u) in Figure 7A

also suggests to us that a Weibull distribution provides a good

first approximation. How to refine this approximation is a

problem treated by our ONESAM data analysis program.

An alternate approach to modeling this data is to find a

transformation to normality; one would then report as one's

conclusion that cube root of Stamford Ozone data is normally

distributed. We believe that this conclusion must be considered

curve fitting, while a conclusion that the data is fit by a

,,I I *jA14 *
4 _. |
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Weibull distribution with 0 in a specified range represents a

curve fit with scientific insight (which may help to explain

the physical mechanisms generating the data).

!
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8. Super-short distributions as harbingers of bimodality

When the sample informative quantile function indicates a

"super short" distribution the true distribution may not be a

super-short unimodal distribution, but a bimodal distribution.

The manner in which a super-short distribution may be

indicative of bimodality is indicated by the two-sample problem.

One has a sample of values from a distribution F(x), and a sample

of values from a distribution G(x). When the samples are pooled,

they are regarded as a sample from a distribution H(x) which can

be represented H(x) - A F(x) + (l-X) G(x) where X is the fraction

of the pooled sample from F(x). One often seeks to test the

hypothesis Ho: F(x) - G(x). The informative quantile plot of

H(x) is super-short when F and G have their modes far apart.

To illustrate the ideas, assume F(x) - t(x), G(x) - O(x-6),

H(x) - 0.5{0(x) + t(x-6)1. A random sample from H(x), of size

40 was simulated, for 6 - 1, 2, 3, 4, 5, 6. The observed

values of IQ(u) are given in the following table.

6 u .05 .10 .25 .75 .90 .95

1 -.6566 -.6069 -.2110 .2890 .5005 .6570
2 -.4450 -.3553 -.2044 .2956 .5847 .7258

3 -.4077 -.2801 -.2034 .2966 .5012 .6108
4 -.4586 -.4260 -.2908 .2092 .3326 .4340

5 -.4350 -.3620 -.2649 .2351 .4079 .4191

6 -.3228 -.2915 -.1841 .3159 .3795 .4179

-4.-
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Other summary statistics of the samples were

6 Median Interquartile Mean St. Dev. Log
Range IQ IQ SDIQ

1 .62 1.46 .01 .3689 -.997

2 1.10 2.07 .05 .3347 -1.095
3 .97 2.85 .05 .3024 -1.196

4 2.23 3.96 -.03 .2846 -1.257

5 2.36 4.00 .01 .2900 -1.238

6 2.39 5.28 .05 .2669 -1.321

The values of IQ(0.05), IQ(0.95) and log SDIQ in the case

6 f 1 indicate a Gaussian distribution. The values of IQ(0.05)

and IQ(0.95) in the cases 6 - 4, 5, 6 indicate a super-short

distribution which leads us to check the quantile functions of

the pooled sample for the possiblity of bimodality which often

indicates that the two samples do not have the same distributions.

V
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9. Theoretical and empirical formulas for computing tail

exponents

The properties of slowly varying functions are best under-

stood by considering an example.

Lemm L(u) - {log u 1 l8 is (integrally) slowly varying

as uO.

Proof: log L(yu) - B log log (yu) - 8 log (log y-1 + log u - 1

log L(yu) - log L(u) - B log (1 + (log y' /log u- 1

-1 -1Ilog L(yu) - log L(u)t < 8 I(log y /log u-I

Verify that fo Ilog yj dy < , and l/log u- 1 - 0 as u - 0.

One can conclude that L(u) is slowly varying and also integrally

slowly varying.

The representation of fQ(u) suggests a formula for

computation of tail exponents a0 and a, (which may be adapted to

provide estimators from data).

Theorem: Computation of tail exponents

- 0 - lim fl {log fQ(yu) - log fQ(u)} dy

0 -- 0*

Equivalently

- 0 - li 1 JP log fQ(t) dt- log fQ(p)
0 p o

-AMON W;
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Similarly

aI  liro {log fQ(l-yu) - log fQ(l-u)} dy
u *O

l _i p r pf log fQ(t) dt - log fQ(l-p)

Proof: log fQ(u) - m0 log u + log Lo(u),

log fQ(yu) -log fQ(u) - ao log y + log Lo(yu) - log LO(v

Since fi log y dy - -1, we conclude that

0 {log fQ(yu) - log fQ(u)) dy - -a 0 + o(u)

Similarly one derives formula for a,.

Because the density-quantile and quantile-density functions

are reciprocals, we obtain similar formulas for q(u) which may

be easier to implement in practice:

- a0
q(u) - u LO (u) , as u-P0

q(u) - (1-u) Ll(1-u), as u0l

a0 - lir f1 (log q(yu) - log q(u)) dy

- lir fl (log q(l-yu) - log q(l-u)) dy.
u-.
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For theoretical purposes it is often convenient to compute

tail exponents using formulas such as

d

MO - lm u T log fQ(u)u.O

- lim -u J(u)
u-O fQ(u)

01 - lim - (1-u) d log fQ(u)

- lim (1-u) J(u)
u-1l fQ (u)

In practice, we would estimate tail exponents from the

values of fQ(t) at an equispaced grid of points t-j/n,

J-1,2,... ,n-l. Let k and n tend to - in such a way that k/n

tends to 0; define

1k
I log fQ(-J)  log fQk+l

-',k W n n--)

J-1-
a n~ 1o Q- log fQ(1A 1 )
k K j-n-k n o n

Conjectures to be proved are that

0 - lim a0

k/nO

L -' ,! ' - I ", "
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a k1Ji O l,k

k/n-P'O

The rate of convergence can be very slow. If L(u) -

{log u-l} , then

0 " 0
+ clog n -

The theoretical properties and practical implementation

of the foregoing estimators remains to be investigated.

Related estimators are given in Mason (1982) and the papers

referenced there.

. . . . .. . l ) I ,'
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APPEN~DIX

Informative Quantile Functions of Weibull Distributions with

Parameter 0:

Q(U) f log(1-u)- }0



32

* S
d d

U U
d d

-e
* I.

* U U 8
d a

- Ia

~1 S -I U
d d

0 0
I-

w hi

U U

d
-J

I I
§ §

B I I

El WI US ~ a in~ mo US *3I
q

3

* U

p UU. d a
9 I.

* U U ad

K - a
-J3 -a U

d
0

* *. g~ I&a -

U
d 5

E E

I ____________________a a
si ma us a U j as



q33 .

U SU

ov WI a1.s a'3* l . a0 "l

aza
d 3

d v

W9 n6 R a W W+ 0, ol 0 lo
16 3



33

do a;

dir

II 3e 
I

dd

w g~a w

IS T

st r Ult al al.v .

MONISM



t ca

C,

0 0 0

"t l Nis ovI6 0 A r* o#



6 36

d

-In

di



I


